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The mean lift coefficient of a circular cylinder executing rotary motions in a uniform 
flow is investigated. These motions include steady rotation, and rotary oscillations with 
a net rotation rate, Results for the steadily rotating cylinder show that for a given 
rotation rate, larger cylinder aspect ratios yield higher lift coefficients. It was also found 
that the addition of forced rotary oscillations to the steady rotation of the cylinder 
increases the lift coefficient in the cases where the wake would normally be separated 
in the steadily rotating case, but decreases it otherwise. In addition, a method for 
estimating the mean lift of a rotating cylinder is presented. Estimates based on this 
method compare favourably with similar data published for steadily rotating cylinders. 

1. Introduction 
A rotating cylinder moving in a uniform stream experiences a force normal to the 

direction of motion. Goldstein (1938) refers to several historical papers on both 
rotating spheres and cylinders, crediting Magnus (1 853) with the first laboratory 
experiments examining the lift on a rotating cylinder. Early in this century, experiments 
on a circular cylinder rotating about its axis in a uniform flow were performed by Reid 
(1924), Prandtl(1925), and Thom (1926, 1931), for example. They found that the mean 
lift of a cylinder was an (unspecified) function of its rotation rate. Their measurements 
were for Reynolds numbers in the range 

4 x lo4 < Re = 2aUJv < 1.2 x lo5, (1) 

where a is the cylinder radius, U ,  is the free-stream velocity, and v is the kinematic 
viscosity. More recently, experiments and simulations have been performed at low 
Reynolds numbers by Badr & Dennis (1989), Ingham & Tang (1990), and Tang & 
Ingham (1991) for the steady flow past a rotating cylinder, and at higher Reynolds 
numbers of lo3 and lo4 by Badr et al. (1990) for the flow past a cylinder impulsively 
started in both rotation and translation. Of particular interest is the observation by 
Badr et al. (1990), that there is no periodic vortex shedding from a cylinder that is 
rotating with a surface velocity greater than two or three times the free-stream velocity. 

As is well known, the mean lift coefficient of a cylinder can be written as 

where p is the fluid density, L is the lift per unit span, and r is the mean circulation 
taken around a contour enclosing the lifting body. See for example Taylor (1925), 
Thwaites (1960). That this circulation could be measured around contours close to the 
cylinder was shown experimentally by Thom (193 1). 
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In the potential flow prototype of a cylinder with lift in a uniform free stream, the 
rotation and lift of the cylinder is modelled by a point vortex of strength T a t  its centre. 
See for example Milne-Thomson (1968, pp. 187-190). When modelling a flow, r 
should be considered as a parameter to be adjusted so that the flow is properly 
represented; e.g., to satisfy the Kutta condition when modelling flow past an airfoil. 
Proposing that C, can be made arbitrarily large by arbitrarily increasing T is not 
helpful; r is the mean lift (cf. (2)). 

Prandtl(l925) argued that the maximum circulation, T,,,, which could be realized 
about the rotating cylinder was equal to the circulation at which the upstream and 
downstream stagnation points join on the bottom of the cylinder. From the potential 
flow analogue of that case, that corresponds to a value of 

r,,, = 4nUm a. ( 3 )  

See also the discussion in Goldstein (1938, pp. 81-84). Beyond this point, Prandtl 
argued that no circulation could be shed by the cylinder to infinity, as it is ramped up 
from rest to a constant rotation rate, fixing the total circulation at infinity, and the lift 
of the rotating cylinder thereby. If this argument were correct, the maximum steady- 
state lift coefficient that can realized would be given by, 

CL,,, = 4.n z 12.6. (4) 

Note that Prandtl relates the real and potential flow case of the rotating cylinder not 
by matching the circulation calculated by taking a contour around the cylinder at the 
surface, as one would expect, but by matching the peak circumferential velocities in the 
two cases. 

The present experiments examine the effect of cylinder rotating on the flow ahead of 
the cylinder. In order to assess the effects of forcing, the flow ahead of the cylinder was 
described in terms of the strength and position of a virtual vortex. The strength of the 
virtual vortex was then related to the lift coefficient of the cylinder. Results obtained 
for a steadily rotating cylinder (no forced oscillations) compare favourably with similar 
data published in the literature. It was also found that the addition of forced rotary 
oscillations to the steady rotation of the cylinder helped increase the lift coefficient in 
cases where the wake would normally be separated in the steadily rotating case, and 
decrease it otherwise. It is believed that this is the first investigation of the flow past a 
cylinder with both net rotation and forced oscillations. 

2. Experimental set-up 
The present experiments were performed in GALCIT 20 in. x 20 in. Free Surface 

Water Tunnel? (see Ward 1976). A machined Plexiglas cylinder, 1 in. in diameter and 
an aspect ratio of 18.7 was supported 10 in. above the bottom of the water channel, 
between 0.5 in. thick Plexiglas fairings placed flush to the sidewalls of the channel. 
Power was transferred from the motor to the cylinder using steel reinforced neoprene 
timing belts. These were entirely enclosed in the fairings and did not interfere with the 
flow. The cylinder was driven by a high-performance DC motor from PMI Motion 
Technologies (JR16M4CH Servodisk@), capable of tracking an arbitrary command 
signal within the bandwidth and slewing rates that were investigated. The command 

t The set-up of the present experiments is similar to that used in Tokumaru & Dimotakis (1991), 
and Tokumaru (1991). 
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signal for the cylinder angular velocity was generated by a computer-controlled 
function generator. The angular position of the cylinder was measured using a BE1 
Motion Systems Co. 13-bit absolute position encoder connected to the motor 
driveshaft. 

Velocities were measured using a two-channel (u, v) laser Doppler velocimeter. The 
optics, traverse and analogldigital LDV processor, outlined below, are as employed by 
Lang (1985). The u-channel was only used to measure the free-stream velocity. The v- 
channel velocities were used to estimate the lift coefficient. A Lexel Model 85 Argon- 
ion laser operating in single-line mode (514.5 nm) at about 200 mW was used for the 
LDV. The laser beam for the LDV velocity measurements was split into four beams 
of nearly equal intensity using two cube beam splitters in series, at +45O and -45", 
respectively. The beams for the v-channel were then Bragg-cell frequency-shifted to 
accommodate flow reversals. The Bragg-cell frequency offset between the two beams 
was 300 kHz for the present data. For alignment, to ensure that the beams intersected 
in a single probe volume, each of the four beams was passed through wedge prisms. 
An achromat was used to focus the beams in a focal (measurement) volume located in 
the midspan plane of the FSWT. Light scattered from the focal volume was gathered 
by two achromats, in series, and focused on a photodiode with an integral low-noise 
pre-amplifier. The signal from the pre-amplifier was then band-pass filtered above and 
below the frequency corresponding to the mean flow velocity to isolate the u-velocity, 
and around the Bragg offset to isolate the v-velocity. The band-pass ranges were chosen 
to pass instantaneous velocity fluctuations and were non-overlapping. 

For the data in figures 2 4 ,  the signals from the band-pass filters were processed by 
an LDV signal processor (Lang 1985) and the velocity data were stored on disk. Each 
data point in figure 2 is an average over about 10000 (instantaneous) velocity 
measurements. For the data in figure 6, a pair of tracking phase-locked loops were used 
to lock TTL square waves to the dominant u- and v-channel frequencies from the band- 
pass filters. The TTL signals were then read by a (multiple) counter-timer board on a 
data acquisition computer and stored on disk for later processing. 

Flow visualization was accomplished by introducing red dye into the flow ahead of 
the cylinder through a hypodermic tube. A blue filter was used to darken the red dye 
marker relative to the white background. Photographs were taken using a 35mm 
camera. Illumination was provided from behind a large (backlit) white sheet of paper 
suspended, outside the water tunnel, behind the model. 

3. Cylinder motion 

a single equation; i.e. 
The angular motion of the cylinder in the present experiments can be described by 

52 = 52, + SZ, sin (27cft), (5) 

where 52 = ea/U,  (6) 
is the normalized rotation rate of the cylinder, a is the cylinder radius, U ,  is the free- 
stream velocity, t is the time, & is the angular velocity of the cylinder, f i s  the forcing 
frequency, and, 52, and 52, are amplitudes of the steady and harmonic components of 
the cylinder motion. The normalized forcing frequency is 

S, = 2afjU,, (7) 

i.e. the forcing Strouhal number. The Reynolds numbers in the present experiments are 
Re = 3.8 x lo3 and 6.8 x lo3. 
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4. Lift estimation by the virtual vortex method 
The cylinder in the present experiments experiences no net rotational acceleration 

after its initial start-up. Hence, once steady-state flow has been established, it cannot 
shed any additional vorticity into the wake, in the mean. It follows that, some time 
after start-up, the circulation in the wake cannot contribute to the mean circulation, r, 
taken around the cylinder. As a consequence, the vorticity contributing to r must be 
restricted to a relatively small neighbourhood around the cylinder. This suggests that 
the effect on the flow, some distance from the lifting body, can be approximated, in a 
multipole expansion sense, by a single virtual vortex of strength r. 

Ideally, in an infinite domain, the transverse velocity v(x ,y  = 0) a distance x 
upstream of a vortex centre is 

+,y = 0) = - r / 2 n x .  (8) 
Using (2)  and (8), u can be written in terms of the lift coefficient, C,. For the infinite- 
domain case this can be written as 

Because of the finite height of the test section, however, a proper account should 
include an infinite series of spatially periodic image vortices located above and below 
the cylinder. See figure 1. In this way, symmetry guarantees a no-throughflow 
condition at the top and bottom of the test section. An expression for an infinite series 
of vortices, of the same sign, spaced horizontally (instead of vertically), can be found, 
for example, in White (1979, pp. 470-471). Two such expressions, one for the positive- 
signed vortices and one for the negative, are superimposed, a half a period out of phase 
and then evaluated along the x-axis to yield the following equation, which replaces (8) : 

v(x, y = 0) = - - cosech ( n - 
2h 

where h is the test section height and xo is the streamwise position of the virtual vortex. 
Rearranging (1 0) yields 

2 h ~ ( x , y  = 0)  = - c o s e c h ( n y ) ,  
r 

or, using (2), 
v(x,y = 0) a 

urn 2h 

A more general form of (12) which allows for both a streamwise (x,) and transverse (yo) 
displacement of the virtual vortex is 

(1 3) 1. v(x ,y  = 0) a cos (ny, /h)  sinh (n(x-x , ) /h)  
urn = +[ sin2 (n y,/h) + sinh2 (~(x - x,)/h) 

Note that when measuring v along the x0, = 0) axis, a transverse displacement of the 
virtual vortex from that axis, yo, is a higher-order effect than a streamwise displacement, 
x,, 1.e. 

v a  
U ,  2h 
-=-CLcosech 
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FIGURE 1. Diagram of periodic image vortices. Only the image vortices immediately above and below 
are pictured. The larger circle denotes the cylinder (not to scale), and the smaller circles the virtual 
vortex and its images. 

5.  Steady rotation: 52, = 0 
To test the utility of (10)-(12), the transverse velocity was measured at six locations 

ahead of the cylinder axis, for a range of 0.5 d 52, d 10 (Re  = 3.8 x lo3). The validity 
of this model for the transverse (0) velocity ahead of the cylinder is demonstrated in 
figure 2, a plot of 2hv/T us. (x -  xo)/a.  The parameters h, a, and x were known a priori 
(h /a  = 40), and v / U ,  was measured. r and xo were determined using (11) and a 
version of the Levenberg-Marquardt nonlinear least-squares fit routine from Press 
et al. (1986). Figure 3 compares the results of Reid (1924) and Prandtl (1925) with C, 
determined from this nonlinear least squares curve-fit. For these data, the cylinder 
aspect ratio, A ,  is defined as the ratio of the cylinder span and diameter. 

It may appear that the present results measured at Re = 3.8 x lo3 overestimate C, 
at the lowest values of Q,. In fact, the results of Prandtl (1925) and Reid (1924), at 
Re > 4 x lo4, show a negative C ,  at the lowest values of 52,. Experiments at much lower 
Re (Re  < 100, Badr & Dennis 1989; Tang & Ingham 1991) yield a C ,  somewhat higher 
than the present experiments. Tritton (1988) reports that a sphere also experiences a lift 
in the ‘wrong’ direction at low rotation rates and higher Re because of a turbulent 
separation on the side of the sphere moving opposite to the flow. This suggests that the 
discrepancy at low SZ, may well be attributable to Reynolds number effects. 

As can be seen from figure 3, larger cylinder aspect ratios (A)  yield larger maximum 
lift coefficients (CLmaJ. Compare the results in the present experiments employing a 
cylinder with a larger A = 18.7 with those of Reid ( A  = 13.3) and Prandtl ( A  = 4.7). 

The curve-fit results also show that the centroid of the virtual vortex, xo, is slightly 
ahead of the cylinder axis. See figure 4. In fact, this centroid appears to be slightly 
upstream of the cylinder body, i.e. x o / a  > 1, at the lowest value of 52, (= 0.5). This may 
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FIGURE 2. Normalized transverse velocity ahead of a cylinder executing steady rotation (52, = 0): 
2hv/~vs.(x-x,)/~,Re=3.8x10~.52~=0.5(0),1.5(~),2(A),2.5(+),3(-t),4(0),5(*),6(~), 
8 (I), 10 (-), and 52, = 0. The dashed line is cosech(x(x-x,)/h). 
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FIGURE 3. C, based on data fit in figure 2 Re = 3.8 x lo3, 52, = 0, A = 18.7 (0). Data of Reid (1924) 
A = 13.3, Re = 4.0 x lo4 (O), Re = 5.6 x lo4 (a), Re = 7.9 x lo4 (+), Re = 1.2 x lo5 (+). Data of 
Prandtl (1925) A = 4.7, Re = 5.2 x lo4 (---). A is the ratio of the cylinder span and diameter. 

counter intuition, as very little of the vorticity in the flow is situated upstream of the 
cylinder. As can be seen from figure 5 and (14)’ allowing for a virtual origin away from 
the cylinder axis is a higher-order correction. 

Recall that Goldstein (1938), in an interpretation of an intuitive argument given by 
Prandtl (1925)’ suggested that C, = 4.n M 12.6. The present results, that show the 
estimated C, exceeding 41c, cast 8oubt on this proposed upper limit. Note that the 
value of C, measured at the highest value of 52, exceeds ‘C,,,,’ by more than 20 %. 
In addition, the trend suggests that the estimated C, can be made larger by further 
increasing Q,, or A ,  or both. 

Diffusion and unsteady flow processes can transport vorticity away from the 
cylinder at start-up, weakening Prandtl’s proposed C, az (equation (4)). A more 
plausible explanation is that three-dimensional (end) e$cts will tend to reduce the 



Lift of a cylinder executing rotary motions 

1.2 ~ 

0.8 

Xo/U 0.6 

0.4 

0.2 

7 

- 

- 

- 

- 

l ' O  t 
0 

0 

0 
0 0 0 

0 

0 2 4 6 8 10 
QO 

FIGURE 4. Centroid of the virtual vortex, x,, based on the data fit in figure 2. 
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FIGURE 5. Lift estimates holding the virtual origin coincident with the cylinder axis (A), and 
allowing it to vary (*). 

mean spanwise lift measured at a particular rotation rate to below that which could be 
attained in purely two-dimensional flow. Thorn (1926) showed that the sectional lift 
coefficient decreased toward the ends of a rotating cylinder. It is interesting that 
Goldstein also relates how Prandtl, in one of his experiments, associated the limiting 
of C, J= 4) with a separation of the flow from the sidewalls of the test section. To 
remegy this situation, Prandtl added co-rotating end-disks to the cylinder and then 
observed an increased CL,,,( = 10). No further discussion of end-effects for that 
configuration was included. 

6. Rotation with forced oscillations: 52, += 0, S, = 0.7 
For the data presented in this section, the forcing Strouhal number, S,, is fixed at 0.7, 

while the steady and fluctuating components of the rotary motion are varied. The 
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FIGURE 6. Comparison of C, us. 52, data for several amplitudes of oscillations, with constant forcing 
frequency and Reynolds number (Sf = 0.7, Re = 6.8 x lo3). 0, 52, = 0; A ,  1.2; and 0, 2.3. 

Reynolds number is somewhat higher than in the previous section, at 6.8 x lo3. C, 
is estimated using (12) and the mean velocity at a single point ahead of the cylinder, 
u(x/a = 10). Because x , / x  << 1, the centroid of the virtual vortex is taken to be on the 
cylinder axis, i.e. x o / h  z 0. See (14). In addition, the ratio of the cylinder radius to the 
water tunnel depth is a/h  = 0.025. 

It was found that forced rotary oscillations increased C, for 0 < 0, < 2.5 and 
decreased it for 2.5 < 0, < 4.5. See figure 6. Our results and those of Badr et al. (1990) 
for the steadily rotating case, O1 = 0, show that the cylinder has noticeable periodic 
vortex shedding for 0, < 2.5, and none for 0, > 2.5. 

Flow visualization (figures 7-9) reveals that, for 0, < 2.5, forced oscillations of the 
cylinder help close the wake, creating a flow that, on average, is closer to potential (the 
forced oscillations may also decrease spanwise variations in the flow). In contrast, for 
2.5 < 0, < 4.5, where the wake would normally close with steady rotation alone, 
oscillations have the opposite effect. The data for the three cases presented in figure 6 
coincide for Q,, > 4.5, i.e. the oscillations of the cylinder have little effect on the lift 
beyond this point. There is also a cross-over region of the C, us. Q, curve at 0, between 
2 and 4, where C, does not appear to be a strong function of the forcing amplitude. 

7. Streak flow visualization and streamline patterns 
For the photographs in figures 7-9, dye was introduced upstream of the cylinder 

near the mean ‘stagnation’ streamline. The overlays on the right-hand side of the 
figures depict the streamline patterns calculated from a potential flow model (with the 
cylinder bounded from above and below as in the photographs) using the lift 
coefficients calculated from the present experiments. As can be seen, the stagnation 
streakline in the photographs can be approximated by the stagnation streamline in the 
potential flow case. 
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FIGURE 7. (a) Stationary cylinder, (Go, SZ,, Sf) = (0, 0, 0), C, = 0. (b) Oscillation with zero mean 
rotation rate, (Q,, SZ,, Sf) = (0,2.1,0.7), C, = 0. 

FIGURE 8. (a) Steady rotation, (Q,, SZ,, Sf) = (0.5,0,0), C, = 0.6. (b) Oscillation with same mean 
rotation rate as (a), (SZ,, SZ,,  Sf) = (0.5,2.1,0.7), C, = 2.0. 

FIGURE 9. (a) Steady rotation, (Q0, a,, Sf) = (4,0,0), C, = 10.5. (b) Oscillation with same mean 
rotation rate as (a), (Q,, SZ,, Sf) = (4,2.1,0.7), C, = 9.2. 

8. Conclusions 
These experiments have shown that higher cylinder aspect ratios yield higher 

maximum lift coefficients. The maximum lift coefficients in the present experiments 
exceed that proposed by Prandtl (1925), possibly because Prandtl’s arguments 
neglected unsteady effects. It was also found that addition of forced rotary oscillations 
to the steady rotation of the cylinder increased C, in cases where the wake would 
normally be separated (in the steadily rotating case), but decreased it otherwise. 
Finally, the virtual vortex method was found to be successful in characterizing the flow 
ahead of the cylinder. The method yielded estimates for C, which agree with the data 
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published by Thom (1924) for lift coefficients greater than 2, i.e. 52, > 1. At the smaller 
values of 52, < 1, the measurements yielded values of C, that are higher. This 
discrepancy is attributed to a difference in the Re between the experiments. 

This research was sponsored by the Air Force Office of Scientific Research, URI 
AFOSR Grant No. F49620-86-C-0134. 
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